Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biofactors ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194360

RESUMO

Citrus flavanones are recognized as promising bioactives within the concept of healthy aging. Thus, the present study investigated the effects of a nutritionally relevant dose of lemon extract (LE) on liver redox regulation and persulfidation levels in 24-month-old Wistar rats. LE (40 mg/kg b.m.) was administered orally once daily for 4 weeks. Control groups received either vehicle (sunflower oil) or remained intact. The applied methodology considered qPCR, Western blot, protein persulfidation levels evaluation, histochemistry in line with immunofluorescence, liver biochemical assays (glutathione, total -SH groups and malonaldehyde; MDA), liver enzymes in serum and in silico analysis to explore the potential interaction/binding between the proteins studied in the paper. Our results showed that LE increased glutathione peroxidase (GPx), reductase (GR), glutamate-cysteine ligase catalytic and modifier subunit, respectively, as well as Nrf2 gene expressions, but decreased the expression of superoxide dismutase 2 (SOD2). Upon LE application, protein expression showed upregulation of NRF2, SOD2, GPx, GR, and thioredoxin 1 (Trx1). LE significantly decreased the protein persulfidation levels and concentration of MDA, a marker of oxidative damage in the cell. Histological analysis showed a normal liver histoarchitecture without pathological changes, aligning with the normal serum level of hepatic enzymes. Obtained results showed that LE, by modulating hepatic redox regulators Nrf2 and Trx1, diminishes oxidative stress and alters the persulfidation levels, suggesting a considerable beneficial antioxidant potential of lemon flavanones in the old-aged liver.

2.
J Neurooncol ; 166(1): 143-153, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38117375

RESUMO

PURPOSE: Meningiomas are tumours originating from meningothelial cells, the majority belonging to grade 1 according to the World Health Organization classification of the tumours of the Central Nervous System. Factors contributing to the progression to the higher grades (grades 2 and 3) have not been elucidated yet. Senescence has been proposed as a potential mechanism constraining the malignant transformation of tumours. Senescence-associated beta-galactosidase (SA-ß-GAL) and inhibitors of cyclin-dependent kinases p16 and p21 have been suggested as senescence markers. METHODS: We analysed 318 meningiomas of total 343 (178 grade 1, 133 grade 2 and 7 grade 3). Tissue microarrays were constructed and stained immunohistochemically, using antibodies for SA-ß-GAL, p16 and p21. RESULTS: The positive correlation of the tumour grade with the expression of p16 (p = 0.016) and SA-ß-GAL (p = 0.002) was observed. The expression of p16 and SA-ß-GAL was significantly higher in meningiomas grade 2 compared to meningiomas grade 1 (p = 0.006 and p = 0.004, respectively). SA-ß-GAL positivity positively correlated with p16 and p21 in the whole cohort. In grade 2 meningiomas, a positive correlation was only between SA-ß-GAL and p16. Correlations of senescence markers in meningiomas grade 2 were not present. CONCLUSION: Our findings suggest the senescence activation in meningiomas grade 2 as a potential mechanism for the restraining of tumour growth and give hope for applying of promising senolytic therapy.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Senescência Celular/fisiologia , Oncogenes , beta-Galactosidase/metabolismo , Sistema Nervoso Central/química , Sistema Nervoso Central/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo
3.
Int. j. morphol ; 40(6)dic. 2022.
Artigo em Inglês | LILACS | ID: biblio-1421796

RESUMO

SUMMARY: Acrylamide (AA) is a widely used chemical and an important monomer in various industrial and laboratory processes. In addition, AA is formed during processing of starchy food at high temperature. The aim of our study was to examine effects of subchronic AA treatment on adult rat liver using histological, stereological and biochemical methods. Adult male Wistar rats were treated with AA at doses of 25 mg/kg b.w. and 50 mg/kg b.w. for three weeks. Stereological analysis showed decrease of volume density of hepatocyte cytoplasm, and increase of volume density of hepatocyte nuclei and nucleocytoplasmic ratio in AA50mg group. Immunohistochemical analysis of the liver sections showed that treatment with AA50mg increase the percentage of PCNA positive cells, while the percentage of caspase 3 positive cells was not affected by AA. PAS-staining showed that glycogen content in hepatocytes was not affected by AA. Serological examination revealed increase of lipid peroxidation in AA50mg group, while total protein concentration, protein thiol group level, as well as, paraoxonase 1 activity were not changed in AA-exposed animals. Stereological and immunohistochemical analyses of adult liver sections suggest increase of proliferation in AA50mg group, while increase of lipid peroxidation in serum of AA50mg group indicates oxidative stress induction.


La acrilamida (AA) es un químico ampliamente utilizado y un monómero importante en varios procesos industriales y de laboratorio. Además, la AA se forma durante el procesamiento de alimentos ricos en almidón a altas temperaturas. El objetivo de nuestro estudio fue examinar los efectos del tratamiento con AA subcrónica en el hígado de rata adulta utilizando métodos histológicos, estereológicos y bioquímicos. Se trataron ratas Wistar macho adultas con AA a dosis de 25 mg/kg p.v. y 50 mg/kg de peso corporal por tres semanas. El análisis estereológico mostró una disminución de la densidad del volumen del citoplasma de los hepatocitos y un aumento de la densidad del volumen de los núcleos de los hepatocitos y la relación nucleocitoplasmática en el grupo de 50 mg de AA. El análisis inmunohistoquímico de las secciones de hígado mostró que el tratamiento con 50 mg de AA aumentó el porcentaje de células positivas para PCNA, mientras que el porcentaje de células positivas para caspasa 3 no se vio afectado por AA. La tinción con PAS mostró que el contenido de glucógeno en los hepatocitos no se vio afectado por AA. El examen serológico reveló un aumento de la peroxidación de lípidos en el grupo de 50 mg de AA, mientras que la concentración de proteína total, el nivel del grupo tiol de proteína y la actividad de paraoxonasa 1 no cambiaron en los animales expuestos a AA. Los análisis estereológicos e inmunohistoquímicos de secciones de hígado adulto sugieren un aumento de la proliferación en el grupo AA50 mg, mientras que el aumento de la peroxidación lipídica en suero del grupo AA50 mg indica inducción de estrés oxidativo.


Assuntos
Animais , Masculino , Ratos , Acrilamida/administração & dosagem , Fígado/efeitos dos fármacos , Imuno-Histoquímica , Ratos Wistar , Antígeno Nuclear de Célula em Proliferação
4.
Int J Mol Sci ; 23(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35682741

RESUMO

Acrylamide (AA) toxicity is associated with oxidative stress. During detoxification, AA is either coupled to gluthatione or biotransformed to glycidamide by the enzyme cytochrome P450 2E1 (CYP2E1). The aim of our study was to examine the hepatotoxicity of AA in vivo and in vitro. Thirty male Wistar rats were treated with 25 or 50 mg/kg b.w. of AA for 3 weeks. Qualitative and quantitative immunohistochemical evaluation of inducible nitric oxide synthase (iNOS), CYP2E1, catalase (CAT), superoxide dismutase 1 (SOD1), and SOD2 expression in liver was carried out. Bearing in mind that the liver is consisted mainly of hepatocytes, in a parallel study, we used the rat hepatoma cell line H4IIE to investigate the effects of AA at IC20 and IC50 concentrations on the redox status and the activity of CAT, SOD, and glutathione-S-transferase (GST), their gene expression, and CYP2E1 and iNOS expression. Immunohistochemically stained liver sections showed that treatment with AA25mg induced a significant decrease of CYP2E1 protein expression (p < 0.05), while treatment with AA50mg led to a significant increase of iNOS protein expression (p < 0.05). AA treatment dose-dependently elevated SOD2 protein expression (p < 0.05), while SOD1 protein expression was significantly increased only at AA50mg (p < 0.05). CAT protein expression was not significantly affected by AA treatments (p > 0.05). In AA-treated H4IIE cells, a concentration-dependent significant increase in lipid peroxidation and nitrite levels was observed (p < 0.05), while GSH content and SOD activity significantly decreased in a concentration-dependent manner (p < 0.05). AA IC50 significantly enhanced GST activity (p < 0.05). The level of mRNA significantly increased in a concentration-dependent manner for iNOS, SOD2, and CAT in AA-treated H4IIE cells (p < 0.05). AA IC50 significantly increased the transcription of SOD1, GSTA2, and GSTP1 genes (p < 0.05), while AA IC20 significantly decreased mRNA for CYP2E1 in H4IIE cells (p < 0.05). Obtained results indicate that AA treatments, both in vivo and in vitro, change hepatocytes; drug-metabolizing potential and disturb its redox status.


Assuntos
Acrilamida , Citocromo P-450 CYP2E1 , Acrilamida/metabolismo , Acrilamida/toxicidade , Animais , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Glutationa Transferase/metabolismo , Hepatócitos/metabolismo , Peroxidação de Lipídeos , Masculino , Estresse Oxidativo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase-1/metabolismo
5.
Ageing Res Rev ; 79: 101649, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35595185

RESUMO

Cardiovascular and metabolic disorders present major causes of mortality in the ageing population. Polyphenols present in human diets possess cardiometabolic protective properties, however their underlying molecular mechanisms in humans are still not well identified. Even though preclinical and in vitro studies advocate that these bioactives can modulate gene expression, most studies were performed using targeted approaches. With the objective to decipher the molecular mechanisms underlying polyphenols cardiometabolic preventive properties in humans, we performed integrative multi-omic bioinformatic analyses of published studies which reported improvements of cardiometabolic risk factors following polyphenol intake, together with genomic analyses performed using untargeted approach. We identified 5 studies within our criteria and nearly 5000 differentially expressed genes, both mRNAs and miRNAs, in peripheral blood cells. Integrative bioinformatic analyses (e.g. pathway and gene network analyses, identification of transcription factors, correlation of gene expression profiles with those associated with diseases and drug intake) revealed that these genes are involved in the processes such as cell adhesion and mobility, immune system, metabolism, or cell signaling. We also identified 27 miRNAs known to regulate processes such as cell cytoskeleton, chemotaxis, cell signaling, or cell metabolism. Gene expression profiles negatively correlated with expression profiles of cardiovascular disease patients, while a positive correlation was observed with gene expression profiles following intake of drugs against cardiometabolic disorders. These analyses further advocate for health protective effects of these bioactives against age-associated diseases. In conclusion, polyphenols can exert multi-genomic modifications in humans and use of untargeted methods coupled with bioinformatic analyses represent the best approach to decipher molecular mechanisms underlying healthy-ageing effects of these bioactives.


Assuntos
Doenças Cardiovasculares , MicroRNAs , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/prevenção & controle , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Nutrigenômica , Polifenóis/farmacologia , RNA Mensageiro/genética
6.
Int J Mol Sci ; 23(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35054977

RESUMO

Vitamin D plays an essential role in prevention and treatment of osteoporosis. Thyroid hormones, in addition to vitamin D, significantly contribute to regulation of bone remodeling cycle and health. There is currently no data about a possible connection between vitamin D treatment and the thyroid in the context of osteoporosis. Middle-aged Wistar rats were divided into: sham operated (SO), orchidectomized (Orx), and cholecalciferol-treated orchidectomized (Orx + Vit. D3; 5 µg/kg b.m./day during three weeks) groups (n = 6/group). Concentration of 25(OH)D in serum of the Orx + Vit. D3 group increased 4 and 3.2 times (p < 0.0001) respectively, compared to Orx and SO group. T4, TSH, and calcitonin in serum remained unaltered. Vit. D3 treatment induced changes in thyroid functional morphology that indicate increased utilization of stored colloid and release of thyroid hormones in comparison with hormone synthesis, to maintain hormonal balance. Increased expression of nuclear VDR (p < 0.05) points to direct, TSH independent action of Vit. D on thyrocytes. Strong CYP24A1 immunostaining in C cells suggests its prominent expression in response to Vit. D in this cell subpopulation in orchidectomized rat model of osteoporosis. The indirect effect of Vit. D on bone, through fine regulation of thyroid function, is small.


Assuntos
Colecalciferol/farmacologia , Osteoporose/etiologia , Osteoporose/metabolismo , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Animais , Biomarcadores , Peso Corporal , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imunofluorescência , Hormônios/metabolismo , Imuno-Histoquímica , Masculino , Orquiectomia , Tamanho do Órgão , Osteoporose/tratamento farmacológico , Osteoporose/patologia , Ratos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Células Epiteliais da Tireoide/efeitos dos fármacos , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/patologia , Glândula Tireoide/ultraestrutura , Vitamina D3 24-Hidroxilase/metabolismo
7.
Ann Anat ; 239: 151836, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34563672

RESUMO

Soy isoflavone genistein interplays with numerous physiological or pathophysiological processes during ageing. However, its protective role and underlying mechanisms of action in the regulation of calcium (Ca2+) and phosphate (Pi) homeostasis in an animal model of the andropause are yet to be fully clarified. Wistar male rats (16-month-old) were divided into sham-operated, orchidectomized, orchidectomized estradiol-treated (0.625 mg/kg b.m./day) and orchidectomized genistein-treated (30 mg/kg b.m./day) groups. Treatments were administered subcutaneously for 3 weeks, while the controls received vehicle alone. Estradiol treatment increased the expression level of fibroblast growth factor receptor (FGFR) and parathyroid hormone 1 receptor (PTH1R), and activated mitogen - activated protein kinase kinase 1/2 (MEK 1/2) signaling pathway in the kidneys. Genistein application induced a prominent gene and protein expression of Klotho and downregulated the expression of FGFR and PTH1R in the kidney of andropausal rats. Activation of protein kinase B (Akt) signalling pathway was observed, while MEK 1/2 signaling pathway wasn't altered after genistein treatment. The increase of 25 (OH) vitamin D in the serum and decrease in Ca2+ urine content was observed after genistein application. Our findings strongly suggest genistein as a potent biocompound with beneficial effects on the regulation of Ca2+ and Pi homeostasis, especially during aging process when the balance of mineral metabolism is impaired. These novel data provide closer insights into the physiological roles of genistein in the regulation of mineral homeostasis.


Assuntos
Andropausa , Cálcio , Genisteína , Sistema de Sinalização das MAP Quinases , Fosfatos , Animais , Modelos Animais de Doenças , Genisteína/farmacologia , Homeostase , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno , Orquiectomia , Ratos , Ratos Wistar
8.
Nutrients ; 13(7)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34371836

RESUMO

Cardiometabolic disorders are among the leading causes of mortality in the human population. Dietary polyphenols exert beneficial effects on cardiometabolic health in humans. Molecular mechanisms, however, are not completely understood. Aiming to conduct in-depth integrative bioinformatic analyses to elucidate molecular mechanisms underlying the protective effects of polyphenols on cardiometabolic health, we first conducted a systematic literature search to identify human intervention studies with polyphenols that demonstrate improvement of cardiometabolic risk factors in parallel with significant nutrigenomic effects. Applying the predefined inclusion criteria, we identified 58 differentially expressed genes at mRNA level and 5 miRNAs, analyzed in peripheral blood cells with RT-PCR methods. Subsequent integrative bioinformatic analyses demonstrated that polyphenols modulate genes that are mainly involved in the processes such as inflammation, lipid metabolism, and endothelial function. We also identified 37 transcription factors that are involved in the regulation of polyphenol modulated genes, including RELA/NFKB1, STAT1, JUN, or SIRT1. Integrative bioinformatic analysis of mRNA and miRNA-target pathways demonstrated several common enriched pathways that include MAPK signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway, focal adhesion, or PPAR signaling pathway. These bioinformatic analyses represent a valuable source of information for the identification of molecular mechanisms underlying the beneficial health effects of polyphenols and potential target genes for future nutrigenetic studies.


Assuntos
Síndrome Metabólica/prevenção & controle , Fenômenos Fisiológicos da Nutrição/genética , Polifenóis/farmacologia , Substâncias Protetoras/farmacologia , Adulto , Fatores de Risco Cardiometabólico , Biologia Computacional , Feminino , Humanos , Masculino , Síndrome Metabólica/genética , MicroRNAs/sangue , Pessoa de Meia-Idade , Nutrigenômica , RNA Mensageiro/sangue , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética
10.
Microsc Microanal ; 27(2): 437-449, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33586646

RESUMO

The aim of the present study was to determine and elaborate on all changes in old-aged (OA) versus young-aged (YA) rat thyroids by using stereological, ultrastructural, hormonal, and gene expression analyses. We used 4- and 24-month-old male Wistar rats in our evaluation, presenting all changes in comparison with YA rats. Results showed that the thyroid parenchyma was characterized by higher absolute volumes of the gland, colloid, epithelium, and interstitium by 135, 135, 140, and 142% (p < 0.05) respectively, while the relative volumes of colloid and glands were unchanged. Ultrastructural analysis revealed less active glands, with smaller amounts of lysosomes, thyroglobulin (Tg) granules, and microvilli in the luminal colloid. Optical density values for thyroid peroxidase (TPO), Tg, and vascular-endothelial growth factor immunostaining remained unchanged; however, TPO and Tg exhibited visually stronger expression in small active follicles. Thyroxine (T4)-Tg, the relative intensity of fluorescence (RIF), serum T4, and the sodium-iodide symporter immunohistochemical and gene expressions decreased by 20, 40, 29, and 31% (p < 0.05), respectively, in OA thyroids. Pituitary thyroid-stimulating hormone (TSH) RIF increased by 44% (p < 0.05), but the TSH serum concentration remained unchanged. In conclusion, the obtained results indicate depression of the thyroid gland synthetic and secretory capacity with advanced age.


Assuntos
Glândula Tireoide , Tireotropina , Animais , Expressão Gênica , Masculino , Ratos , Ratos Wistar , Tireoglobulina/genética
11.
Med Hypotheses ; 148: 110516, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33548764

RESUMO

In a series of our previous works, we revealed the beneficial effects of applied soy isoflavones (genistein or daidzein) on the wide context of corticosteroidogenesis in vivo, in a rat model of the andropause. Soy isoflavones decreased the circulating levels of pituitary adrenocorticotropic hormone, inhibited aldosterone secretion, as well as corticosterone production and secretion, but stimulated dehydroepiandrosterone secretion, all in andropausal rats. In vitro studies indicate that the mechanism underlying these hormonal changes relies on inhibition of the pituitary tyrosine kinase and adrenocortical 3ß-hydroxysteroid dehydrogenase enzymes by soy isoflavones. Although the clinical studies are in their infancy, the opinion is that genistein and daidzein have therapeutic potential for the safe treatment of ageing-caused androgen deprivation and glucocorticoid excess with related metabolic/hemodynamic issues in males. Our accumulated experience and knowledge in the field of biomedical effects of plant polyphenols have provided a platform for potential recommending the agenda to organize and accelerate experimental research aimed at producing the optimal supplementation. We hypothesize that an in vivo approach should first be exploited in the sequence of investigative steps, followed by in vitro studies and synchronously conducted molecular docking analyses. In vivo research, besides establishing the margin of exposure safety or adjustment of the correct polyphenol dose, enables identification and quantification of the metabolites of applied polyphenols in the blood. Subsequent in vitro exploitation of the metabolites and related docking analyses provide clarification of the molecular mechanisms of action of applied polyphenols. Chemical modification of the polyphenol structure or coupling it with nanoparticles might be the next step in optimizing the design of supplementation. Selected, intact or chemically-modified polyphenol molecules should be included in preclinical studies on a more closely-related species, while clinical studies would finally assess the safety and effectiveness of a polyphenol-based remedial strategy. The final supplement represents a product of an appropriate technological process, conducted in accordance with the recommendations derived from the preceding research.


Assuntos
Andropausa , Isoflavonas , Neoplasias da Próstata , Antagonistas de Androgênios , Animais , Suplementos Nutricionais , Humanos , Masculino , Simulação de Acoplamento Molecular , Ratos
12.
J Toxicol Environ Health A ; 84(4): 173-182, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33234086

RESUMO

Chronic use of atypical antipsychotics may produce hepatic damage. Atypical antipsychotics, including clozapine, sertindole, and ziprasidone, are extensively metabolized by the liver and this process generates toxic-free radical metabolic intermediates which may contribute to liver damage. The aim of this study was to investigate whether clozapine, sertindole, or ziprasidone affected hepatic antioxidant defense enzymes which consequently led to disturbed redox homeostasis. The expression and activity of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), and glutathione-S-transferases (GST) were measured in rat livers at doses corresponding to human antipsychotic therapy. Clozapine increased activity of SOD types 1 and 2, GR and GST, but reduced CAT activity. Sertindole elevated activities of both SODs. In ziprasidone-treated rats only decreased CAT activity was found. All three antipsychotics produced mild-to-moderate hepatic histopathological changes categorized as regenerative alterations. No apparent signs of immune cell infiltration, microvesicular or macrovesicular fatty change, or hepatocytes in mitosis were observed. In conclusion, a 4-week long daily treatment with clozapine, sertindole, or ziprasidone altered hepatic antioxidant enzyme activities and induced histopathological changes in liver. The most severe alterations were noted in clozapine-treated rats. Data indicate that redox disturbances may contribute to liver dysfunction after long-term atypical antipsychotic drug treatment.


Assuntos
Antioxidantes/metabolismo , Antipsicóticos/efeitos adversos , Clozapina/efeitos adversos , Imidazóis/efeitos adversos , Indóis/efeitos adversos , Fígado/efeitos dos fármacos , Piperazinas/efeitos adversos , Tiazóis/efeitos adversos , Animais , Fígado/enzimologia , Hepatopatias/etiologia , Masculino , Ratos , Ratos Wistar
13.
J Agric Food Chem ; 68(31): 8242-8254, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32657124

RESUMO

A growing population of elderly people consume citrus flavanones, naringenin, and hesperetin in the form of fruits or juices. Flavanones are bioactives with potent antioxidant properties and have potential in slowing down the aging process. Because flavanones exert controversial effects on pituitary-thyroid functioning, our study on the old-aged rat model aimed to elucidate the mechanism by which naringenin and hesperetin affect this axis. Naringenin and hesperetin increased the Sirt1 mRNA level by 91 and 71% (p < 0.05), which was followed by increased Sirt1 expression by 20 and 15% (p < 0.05), respectively. Only naringenin decreased thyroid-stimulating hormone expression by 20% (p < 0.05). Thyroid peroxidase protein expression was upregulated after naringenin or hesperetin by 62 and 43% (p < 0.05), respectively. Naringenin lowered mRNA levels of Tpo, Sod1, Sod2, Cat, and Nrf2 by 50, 32, 45, 35, and 42% (p < 0.05), respectively, and increased Gpx by 54% (p < 0.05), while hesperetin decreased Sod1 and Sod2 mRNA levels by 46 and 55% (p < 0.05), respectively. Naringenin increased the protein expressions of Nrf2 and SOD2 by 58 and 50% (p < 0.05), respectively, and decreased SOD1 expression by 48% (p < 0.05), while hesperetin protein decreased expressions of SOD1 and Nrf2 by 63 and 32% (p < 0.05), respectively. Altogether, our findings suggest that citrus flavanones contribute to restoring the impaired thyroid functioning in the old-aged rats.


Assuntos
Envelhecimento/efeitos dos fármacos , Citrus/química , Flavanonas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/farmacologia , Sirtuína 1/metabolismo , Glândula Tireoide/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Flavanonas/química , Frutas/química , Masculino , Fator 2 Relacionado a NF-E2/genética , Extratos Vegetais/química , Ratos , Ratos Wistar , Sirtuína 1/genética , Glândula Tireoide/metabolismo
14.
Ann Anat ; 230: 151487, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32120001

RESUMO

INTRODUCTION AND AIM: Daidzein application may represent an effective and less harmful alternative to indicated, classical estrogenization of ageing men. The aim of this study was to perform structural and hormonal analysis of the adrenal cortex, after estradiol or daidzein supplementation in a rat model of the andropause. MATERIAL AND METHODS: Middle-aged Wistar rats were divided into sham operated (SO; n = 8), orchidectomized (Orx; n = 8), estradiol treated orchidectomized (Orx + E; n = 8) and daidzein treated orchidectomized (Orx + D; n = 8) groups. Estradiol (0.625 mg/kg b.m./day) or daidzein (30 mg/kg b.m./day) were administered subcutaneously for three weeks, while the SO and Orx groups received the vehicle alone. Set objectives were achieved using stereology, histochemistry/immunohistochemistry, immunoassays and ultrastructural analysis. RESULTS: Both estradiol and daidzein treatment significantly increased volumes of the zona glomerulosa cell and nuclei, but decreased circulating aldosterone levels. Estradiol markedly increased volumes of the zona fasciculata cell and nuclei in parallel with significant decrease of the adrenal tissue level of corticosterone, while daidzein significantly decreased both the adrenal and circulating levels of corticosterone. Serum DHEA level and volumes of the zona reticularis cell and nuclei significantly increased upon estradiol treatment, whereas daidzein even stronger increased the circulating level of DHEA. Shunting of the corticosteroidogenesis pathways towards adrenal androgens production, after the treatments, corresponded to the ultrastructural findings and zonal capillary network rearrangements. CONCLUSIONS: Given the coherence of its effects and relative safety, daidzein could be the remedy of choice for the treatment of ageing-caused androgen deprivation and the hypothalamo-pituitary-adrenal axis hyperfunction/related metabolic issues in males.


Assuntos
Córtex Suprarrenal/efeitos dos fármacos , Isoflavonas/administração & dosagem , Fitoestrógenos/administração & dosagem , Córtex Suprarrenal/anatomia & histologia , Córtex Suprarrenal/ultraestrutura , Aldosterona/sangue , Andropausa , Animais , Peso Corporal , Corticosterona/sangue , Desidroepiandrosterona/sangue , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Masculino , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Orquiectomia , Tamanho do Órgão , Potássio/sangue , Distribuição Aleatória , Ratos , Ratos Wistar , Sódio/sangue
16.
Cell Metab ; 30(6): 1152-1170.e13, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31735592

RESUMO

Life on Earth emerged in a hydrogen sulfide (H2S)-rich environment eons ago and with it protein persulfidation mediated by H2S evolved as a signaling mechanism. Protein persulfidation (S-sulfhydration) is a post-translational modification of reactive cysteine residues, which modulate protein structure and/or function. Persulfides are difficult to label and study due to their reactivity and similarity with cysteine. Here, we report a facile strategy for chemoselective persulfide bioconjugation using dimedone-based probes, to achieve highly selective, rapid, and robust persulfide labeling in biological samples with broad utility. Using this method, we show persulfidation is an evolutionarily conserved modification and waves of persulfidation are employed by cells to resolve sulfenylation and prevent irreversible cysteine overoxidation preserving protein function. We report an age-associated decline in persulfidation that is conserved across evolutionary boundaries. Accordingly, dietary or pharmacological interventions to increase persulfidation associate with increased longevity and improved capacity to cope with stress stimuli.


Assuntos
Envelhecimento/metabolismo , Sulfeto de Hidrogênio/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Sulfetos/metabolismo , Animais , Caenorhabditis elegans , Linhagem Celular , Cicloexanonas/química , Cisteína/química , Cisteína/metabolismo , Drosophila melanogaster , Escherichia coli , Fibroblastos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Saccharomyces cerevisiae , Coloração e Rotulagem
17.
EXCLI J ; 18: 106-126, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30956643

RESUMO

Prostate cancer is a complex, progressive, bone-tropic disease, which is usually associated with skeletal issues, poor mobility and a fatal outcome when it reaches the metastatic phase. Soy isoflavones, steroid-like compounds from soy-based food/dietary supplements, have been found to decrease the risk of prostate cancer in frequent consumers. Herein, we present a systematization of the data on soy isoflavone effects at different stages of metastatic prostate cancer progression, with a particular interest in the context of bone-related molecular events. Specifically, soy isoflavones have been determined to downregulate the prostate cancer cell androgen receptors, reverse the epithelial to mesenchymal transition of these cells, decrease the expressions of prostate-specific antigen, matrix metalloproteinase and serine proteinase, and reduce the superficial membrane fluidity in prostate cancer cells. In addition, soy isoflavones suppress the angiogenesis that follows prostate cancer growth, obstruct prostate cancer cells adhesion to the vascular endothelium and their extravasation in the area of future bone lesions, improve the general bone morphofunctional status, have a beneficial effect on prostate cancer metastasis-caused osteolytic/osteoblastic lesions and possibly affect the pre-metastatic niche formation. The observed, multilevel antimetastatic properties of soy isoflavones imply that they should be considered as promising components of combined therapeutic approaches to advanced prostate cancer.

18.
Ann Anat ; 221: 27-37, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30240906

RESUMO

In a rat model of the andropause we aimed to examine the influence of daidzein, soy isoflavone, on the structure and function of parathyroid glands (PTG) and the expression levels of some of the crucial regulators of Ca2+ and Pi homeostasis in the kidney, and to compare these effects with the effects of estradiol, serving as a positive control. Middle-aged (16-month-old) male Wistar rats were divided into the following groups: sham-operated (SO), orchidectomized (Orx), orchidectomized and estradiol-treated (Orx+E; 0.625mg/kg b.w./day, s.c.) as well as orchidectomized and daidzein-treated (Orx+D; 30mg/kg b.w./day, s.c.) group. Every treated group had a corresponding control group. PTH serum concentration was decreased in Orx+E and Orx+D groups by 10% and 21% (p<0.05) respectively, in comparison with the Orx. PTG volume was decreased in Orx+E group by 16% (p<0.05), when compared to the Orx. In Orx+E group expression of NaPi 2a was lower (p<0.05), while NaPi 2a abundance in Orx+D animals was increased (p<0.05), when compared to Orx. Expression of PTH1R was increased (p<0.05) in Orx+E group, while in Orx+D animals the same parameter was decreased (p<0.05), in comparison with Orx. Klotho expression was elevated (p<0.05) in Orx+D rats, in regard to Orx. Orx+D induced reduction in Ca2+/creatinine and Pi/creatinine ratio in urine by 32% and 16% (p<0.05) respectively, in comparison with Orx. In conclusion, presented results indicate the more coherent beneficial effects of daidzein compared to estradiol, on disturbed Ca2+ and Pi homeostasis, and presumably on bone health, in the aging male rats.


Assuntos
Andropausa , Modelos Animais de Doenças , Glucuronidase/efeitos dos fármacos , Isoflavonas/farmacologia , Fitoestrógenos/farmacologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/efeitos dos fármacos , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Glucuronidase/genética , Glucuronidase/metabolismo , Proteínas Klotho , Masculino , Orquiectomia , Ratos , Ratos Wistar , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Regulação para Cima
19.
J Toxicol Environ Health A ; 81(17): 844-853, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30036154

RESUMO

Atypical antipsychotics produce severe side effects including myocarditis that may be attributed to oxidative stress. The aim of this study was to investigate the influence of clozapine, ziprasidone, and sertindole on rat heart morphology and determine whether redox imbalane plays a role in development of histopathological changes. Adult 3-month-old male Wistar rats were treated with recommended daily dose for selected drugs. After 4 week treatment histopathological analysis of the heart was performed and expression and activity of antioxidant enzymes determined. All examined drugs induced histopathological changes that were characterized as toxic myocarditis. Degenerative changes in cardiomyocytes were accompanied by lymphocytic infiltration as well as pericardial histopathological alterations in all treated groups. The least prominent changes were observed in sertindole-treated animals, and most severe with clozapine. Clozapine increased superoxide dismutase 1 (SOD1) activity while ziprasidone reduced glutathione reductase (GR) activity. Sertindole exerted no marked effect on antioxidant enzyme function in the heart even though myocardial degeneration was noted. In conclusion, treatment with clozapine or ziprasidone induced pathophysiological alterations in rat heart, which appeared to be associated disturbances in antioxidant capacity. Abbreviation: AAP, Atypical antipsychotics; ROS, reactive oxygen species; SOD1, Copper-zinc superoxide dismutase; SOD2, Manganese superoxide dismutase; CAT, Catalase; GPx, Glutathione peroxidase; GR, Glutathione reductase; H&E, hematoxylin and eosin stain; TNF- α, tumor necrosis factor alpha.


Assuntos
Antioxidantes/metabolismo , Antipsicóticos/toxicidade , Clozapina/toxicidade , Coração/efeitos dos fármacos , Imidazóis/toxicidade , Indóis/toxicidade , Piperazinas/toxicidade , Tiazóis/toxicidade , Animais , Masculino , Miocárdio/enzimologia , Miocárdio/patologia , Oxirredução , Ratos , Ratos Wistar
20.
EXCLI J ; 17: 279-301, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29743865

RESUMO

The pathological phenomenon of somatopause, noticeable in hypogonadal ageing subjects, is based on the growth hormone (GH) production and secretion decrease along with the fall in GH binding protein and insulin-like growth factor 1 (IGF-1) levels, causing different musculoskeletal, metabolic and mental issues. From the perspective of safety and efficacy, GH treatment is considered to be highly controversial, while some other therapeutic approaches (application of IGF-1, GH secretagogues, gonadal steroids, cholinesterase-inhibitors or various combinations) exhibit more or less pronounced weaknesses in this respect. Soy isoflavones, phytochemicals that have already demonstrated the health benefits in treated elderly, at least experimentally reveal their potential for the somatopausal symptoms remediation. Namely, genistein enhanced GHRH-stimulated cAMP accumulation and GH release in rat anterior pituitary cells; refreshed and stimulated the somatotropic system (hypothalamic nuclei and pituitary GH cells) function in a rat model of the mild andropause, and stimulated the GH output in ovariectomized ewes as well as the amplitude of GH pulses in the rams. Daidzein, on the other hand, increased body mass, trabecular bone mass and decreased bone turnover in the animal model of severe andropause, while both isoflavones demonstrated blood cholesterol-lowering effect in the same model. These data, which necessarily need to be preclinically and clinically filtered, hint some cautious optimism and call for further innovative designing of balanced soy isoflavone-based therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...